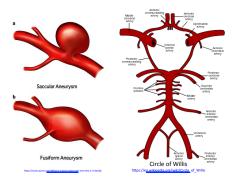
The Neurosurgeon's Predicament: Predicting Cerebral Aneurysm Development and Outcomes


KRISTIN KNUTZEN, advised by TOM ROOT¹ and DR. ROBERT J. SINGER²

¹DEPT. NEUROSCIENCE, MIDDLEBURY COLLEGE, MIDDLEBURY, VT and ²DEPT. NEUROSURGERY, DARTMOUTH HITCHCOCK MEDICAL CENTER, LEBANON, NH

1. Pathology Background

Cerebral Aneurysms an abnormally weakened, distended areas of blood vessels, usually arteries, in the head

5 - 10% of Americans have unruptured cerebral

0.5 - 2%rupture annually, causing subarachnoid

65%

of ruptures may result in major morbidity and mortality

Who's At Risk?

Patients who are elderly, female, genetically predisposed, or have a history of tobacco use or hypertension. Regularly taking aspirin or statins may decrease risk of aneurysm

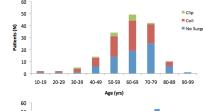
development and rupture

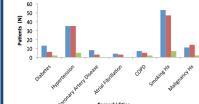
2. Treatment Background

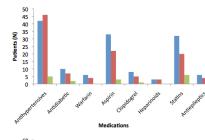
87% Angiography-assisted endovascular coil, stent, or embolization

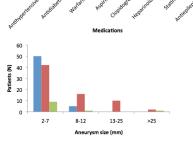
Patients usually have better outcomes with coiling than clipping, including less morbidity and mortality, shorter hospital stays, and less rehabilitation

3. Objectives

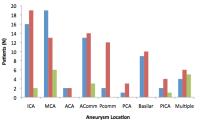

Purpose:


To identify specific patient and procedural characteristics that predict aneurysm development and treatment outcomes, and aid physicians in choosing appropriate treatment for patients' unique circumstances


Database Cohort:


Patients with developing or ruptured cerebral aneurysms seen by Dr. Robert J. Singer at Dartmouth Hitchcock Medical Center between June 2013 - July 2015

4. Cohort Demographics & Variables



	Count (% of cohort)		
Gender			
Male	41 (25.8)		
Female	118 (74.2)		
Age			
Under 60	57 (35.8)		
Over 60 (Elderly)	102 (65.2)		

	Untreated	Coil	Clip
Treatment	74	74	11
Mean Age	65	61	57
Male	24	14	3
Mean BMI	28.7	26.5	30.0
Family History			
One Side	6	7	1
Both Sides	1	4	0
Previous Coil or Clip	4	11	3
Admit Assessment			
IVH		8	2
Intubated		14	2
FND		11	1
Hydrocephalus		10	1
EVD		13	1
Mean SBP		132.9	127.8
Grading (Means)			
Hunt Hess		1	1
Fischer		2	1
GCS		13	14
WFNS		2	1
Outcome			
Mean LOS		6	12
Clinical Vasospasm		7	0
Mean PBD		0	0
Positive TCDs		9	0
Mean PBD		1	0
Radiographic Vasospasm		5	0
Mean PBD		0	0
Discharge			
Home		54	9
Rehab		9	1
SNF		2	0
In-Hospital Mortality		7	1
Grading (Means)			
KPS		86	83
GOS		5	5
Mod. Rankin		1	1

6. Results & Conclusions

In agreement with previous clinical studies, older patients in the cohort seen and treated by Dr. Singer were more likely to be left untreated than to undergo procedural treatment. Larger aneurysms (8-25 mm), as well as aneurysms at the posterior communicating artery, were more likely to be treated than not. Aneurysms at the middle cerebral artery were found more likely to be treated endovascularly than with a craniotomy and clip.

	Untreated	Intervention		p*	p**
		Coil	Clip		-
Mean Age	65	61	57	0.045	
Aneurysm Location					
MCA	19 (11.9%)	13 (8.2%)	6 (3.8%)		0.018
PComm	2 (1.3%)	12 (7.5%)	0 (0%)	0.024	
Aneurysm Size					
8-12 mm	5 (6.8%)	16 (10.1%)	1 (0.6%)	0.029	
13-25 mm	0 (0%)	10 (6.3%)	0 (0%)	0.007	

(p* for untreated v. intervention; p** for coil v. clip)

Why clinical research?

By seeking to understand how patient demographics and delivery of health care impact patient outcomes, medical research can improve physician practice, standards of care, and patient health

Selected References

Bekelis K, Goodney PR, Dzebisashvili N, Goodman DC, Bronner KK. Variation in the care of surgical conditions: cerebral aneurysms. In: A Dartmouth Atlas of Health Care Series. Lebanon, NH, 2014.

Handbook of Neurosurgery, Seventh Edition. Ed. Greenberg MS. 2010. New York: Thieme Publishers. 1034-1096. International Study of Unruntured Intracranial Aneurysms Investigators (ISUIAI). Unruptred intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003, 362: 103-110.

Molyneux A, Kerr R, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular clipping in 2143 patients with ruptured intracranial aneurysms: a randomized trial. J Stroke Cerebrovasc Dis 2002, 11(6): 304-314.

Ziemba-Davis M Bohnstedt BN Payner TD, Leipzig TJ, Palmer E, Cohen-Gadol AA. Incidence, epidemiology, and treatment of aneurysmal subarachnoid in 12 Midwest communities. J Stroke Cerebrovasc Dis 2014, 23 (5): 1073-1082

Acknowledgements

This project would not have been possible without the help of the Neurosurgery Team at Dartmouth Hitchcock Medical Center and Kevin Stanko. Direct funding was provided by The Suzanne and Walter Scott Foundation, The Missy Project, and the Middlebury College Center for Careers and Internships